Selective effects of neuronal-synaptobrevin mutations on transmitter release evoked by sustained versus transient Ca2+ increases and by cAMP.

نویسندگان

  • M Yoshihara
  • A Ueda
  • D Zhang
  • D L Deitcher
  • T L Schwarz
  • Y Kidokoro
چکیده

Synaptobrevin is a key constituent of the synaptic vesicle membrane. The neuronal-synaptobrevin (n-syb) gene in Drosophila is essential for nerve-evoked synaptic currents, but miniature excitatory synaptic currents (mESCs) remain even in the complete absence of this gene. To further characterize the defect in these mutants, we have examined conditions that stimulate secretion. Despite the inability of an action potential to trigger fusion, high K+ saline could increase the frequency of mESCs 4- to 17-fold in a Ca2+-dependent manner, and the rate of fusion approached 25% of that seen in wild-type synapses under the same conditions. Similarly, the mESC frequency in n-syb null mutants could be increased by a Ca2+ ionophore, A23187, and by black widow spider venom. Thus, the ability of the vesicles to fuse in response to sustained increases in cytosolic Ca2+ persisted in the absence of this protein. Tetanic stimulation could also increase the frequency of mESCs, particularly toward the end of a train and after the train of stimuli. In contrast, these mutants did not respond to an elevation of cAMP induced by an activator of adenylyl cyclase, forskolin, or a membrane-permeable analog of cAMP, dibutyryl cAMP, which in wild-type synapses causes a marked increase in the mESC frequency even in the absence of external Ca2+. These results are discussed in the context of models that invoke a special role for n-syb in coupling fusion to the transient, local changes in Ca2+ and an as yet unidentified target of cAMP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin.

Two modes of vesicular release of transmitter occur at a synapse: spontaneous release in the absence of a stimulus and evoked release that is triggered by Ca2+ influx. These modes often have been presumed to represent the same exocytotic apparatus functioning at different rates in different Ca2+ concentrations. To investigate the mechanism of transmitter release, we have examined the role of sy...

متن کامل

Different VAMP/synaptobrevin complexes for spontaneous and evoked transmitter release at the crayfish neuromuscular junction.

Different VAMP/synaptobrevin complexes for spontaneous and evoked transmitter release at the crayfish neuromuscular junction. J. Neurophysiol. 80: 3233-3246, 1998. Although vesicle-associated membrane protein (VAMP/synaptobrevin) is essential for evoked neurotransmitter release, its role in spontaneous transmitter release remains uncertain. For instance, many studies show that tetanus toxin (Te...

متن کامل

Differential effects of SNAP-25 deletion on Ca2+ -dependent and Ca2+ -independent neurotransmission.

At the synapse, SNAP-25, along with syntaxin/HPC-1 and synaptobrevin/VAMP, forms SNARE N-ethylmaleimide-sensitive factor [soluble (NSF) attachment protein receptor] complexes that are thought to catalyze membrane fusion. Results from neuronal cultures of synaptobrevin-2 knockout (KO) mice showed that loss of synaptobrevin has a more severe effect on calcium-evoked release than on spontaneous re...

متن کامل

Two independent pathways mediated by cAMP and protein kinase A enhance spontaneous transmitter release at Drosophila neuromuscular junctions.

cAMP is thought to be involved in learning process and known to enhance transmitter release in various systems. Previously we reported that cAMP enhances spontaneous transmitter release in the absence of extracellular Ca(2+) and that the synaptic vesicle protein neuronal-synaptobrevin (n-syb), is required in this enhancement (n-syb-dependent; Yoshihara et al., 1999). In the present study, we ex...

متن کامل

Seihai-to (TJ-90)-Induced Activation of Airway Ciliary Beatings of Mice: Ca2+ Modulation of cAMP-Stimulated Ciliary Beatings via PDE1

Sei-hai-to (TJ-90, Qing Fei Tang), a Chinese traditional medicine, increases ciliary beat frequency (CBF) and ciliary bend angle (CBA) mediated via cAMP (3',5'-cyclic adenosine monophosphate) accumulation modulated by Ca2+-activated phosphodiesterase 1 (PDE1A). A high concentration of TJ-90 (≥40 μg/mL) induced two types of CBF increases, a transient increase (an initial increase, followed by a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 7  شماره 

صفحات  -

تاریخ انتشار 1999